METHODS OF PROOFS

If we need to prove the statement $\forall x(P(x) \rightarrow Q(x))$ we can prove it using one of the following methods

- Direct proof
- $\forall x(P(x) \rightarrow Q(x))$
$P(n)$ for any arbitrary n in the domain
$\therefore Q(n)$ for any arbitrary n in the domain
We start with the given conditions then we prove the results.

- Contraposition (indirDirect proof
- $\forall x(P(x) \rightarrow Q(x))$
$\neg Q(n)$ for any arbitrary n in the domain
$\therefore \neg P(n)$ for any arbitrary n in the domain
We start with the negation of the results then we prove the given conditions is not satisfied.

CONTRADICTION

- To prove the statement p which we can not prove it with direct proof we will assume that the statement is false (i.e its negation is true)
- So we let $\neg p$ is true with assumption we expected that it will lead to a contradiction statement ($r \wedge \neg r$) or contradiction with an axiom.

$$
\neg p \equiv T \rightarrow F \equiv F \quad \therefore \neg p \equiv F \quad \therefore p \equiv T
$$

- 7. Use a direct proof to show that every odd integer is the difference of two squares.
- Let $p(x): x$ is odd and $Q(x, y, z): x$ is the difference of squares of y and z. Where x, y, z are integers.

$$
\forall x(p(x) \rightarrow \exists y \exists z Q(x, y, z)) \equiv \forall x \exists y \exists z(p(x) \rightarrow Q(x, y, z)) ; x, y, z \in Z
$$

- Let $p(n)$ true for any integer n
$\therefore n=2 k+1 ; k \in Z$

$$
\therefore n=2 k+1+(k)^{2}-(k)^{2}
$$

$\because 2 k+1+k^{2}=(k+1)^{2} \quad \therefore n=(k+1)^{2}-k^{2}$

$$
\therefore Q(n, k+1, k) \quad \text { for any } n=2 k+1 ; y=k+1, z=k
$$

This is prove that every odd integer is the difference of tyo squares.
14. Prove that if x is rational and $x \neq 0$, then $\frac{1}{x}$ is rational.

- Let x is irrational and $x \neq 0$
$\therefore x=\frac{a}{b} \quad ; a, b \in Z, b \neq 0$
$\therefore \frac{1}{x}=\frac{b}{a} ; b, a \in Z ; a \neq 0$.
Since $x \neq 0$, therefore $a \neq 0$.
$\therefore \frac{1}{x}$ is rational number.

15. Use a proof by contraposition to show that if $x+y \geq 2$, where x and y are real numbers, then $x \geq 1$ or $y \geq 1$.

- Let $P(x, y): x+y \geq 2$ and $Q(x): x \geq 1$. where $x, y \in R$

$$
\forall x \forall y ; x, y \in R:(P(x, y) \rightarrow Q(x) \vee Q(y))
$$

- Let by contraposition $x<1$ and $y<1$
$\therefore x+y<1+1$
$\therefore x+y<2$
Therefore by contraposition if $x+y \geq 2$, then $x \geq 1$ or $y \geq 1$.

13. Prove that if x is irrational, then $\frac{1}{x}$ is irrational.

- Let by contraposition if $\frac{1}{x}$ is rational, then x is rational
$\because \frac{1}{x}$ is rational

$$
\therefore \frac{1}{x}=\frac{a}{b} ; a, b \in Z, b \neq 0
$$

$\therefore x=\frac{b}{a} ; b, a \in Z ; a \neq 0$.
Since if $a=0$ we note that $\frac{1}{x}=\frac{0}{b}$, therefore $1=0$ which is false.
$\therefore x$ is rational number.
\therefore by contraposition if x is irrational, then $\frac{1}{x}$ is irrational.
8. Prove that if n is a perfect square, then $n+2$ is not a perfect square.

- Let n is a perfect square i.e n is a square of an integer k.
$\therefore n=k^{2}$ so the next perfect square number is $(k+1)^{2}$
$\because(k+1)^{2}-k^{2}=2 k+1 \quad \because 1$ is the minimum perfect square
$\therefore k \geq 1$
$\therefore(k+1)^{2}-k^{2} \geq 3$
\therefore The difference between two perfect squares at least 3 ,
$\therefore n+2$ is not a perfect square.

$$
\text { If } a, b \in Z \text {, then } a^{2}-4 b \neq 2
$$

- Let by contradiction $a^{2}-4 b=2$
$\therefore a^{2}=4 b+2=2(2 b+1)$
$\therefore a^{2}$ is even so we can write $a^{2}=2 k ; k \in Z$
$\therefore(2 k)^{2}=2(2 b+1)$
$\therefore 4 k^{2}=2(2 b+1)$
$\therefore 2 k^{2}=2 b+1$
Since the L.H.S is an even integer and R.H.S is an odd integer, we get a contradiction with our assumption, Therefore $a^{2}-4 b \neq 2$.

31. Show that these statements about the integer x are equivalent:
(i) $3 x+2$ is even, (ii) $x+5$ is odd, (iii) x^{2} is even.

- We need to prove that $i \equiv i i \equiv i i i$ (the \equiv means \leftrightarrow), so we need to prove $i \leftrightarrow i i \equiv(i \rightarrow$ ii) \wedge (ii \rightarrow i) and also for (ii, iii) and (iii, i) Instead of this we prove that $(i \rightarrow$ ii) \wedge (ii \rightarrow iii) $\wedge($ iii $\rightarrow i)$
- So we $1^{\text {st }}$ will prove $i \rightarrow i i$ (if $3 x+2$ is even, then $x+5$ is odd)

Let by contraposition $x+5$ is even

$$
\therefore x+5=2 k ; k \in Z \quad \therefore x=2 k-5
$$

$$
\begin{aligned}
& \therefore 3 x+2=3(2 k-5)+2=6 k-15+1+1=6 k-14+1=2(3 k-7)+1 \\
& \therefore 3 x+2=2 r ; r=3 k-7 \in Z \quad \therefore 3 x+2 \text { is odd }
\end{aligned}
$$

- $2^{\text {nd }}$ we will prove $i i \rightarrow i\left(x+5\right.$ is odd, then x^{2} is even $)$

Let $x+5$ is odd $\therefore x+5=2 k+1 ; k \in Z \quad \therefore x=2 k-4=2(k-2)=2 l ; l \in Z$
$\therefore x^{2}=4 l^{2}=2\left(2 l^{2}\right)$ which is even

- Finally we will prove iii $\rightarrow i\left(x^{2}\right.$ is even, then $3 x+2$ is even)
- We can not prove this statement using direct prove or contraposition so we will true the contradiction but we have a conditional statement

$$
\neg(\forall x(p(x) \rightarrow Q(x))) \equiv \exists x(p(x) \wedge \neg Q(x))
$$

So we let x^{2} is even and $3 x+2$ is odd
$\because 3 x+2=2 k+1 ; k \in Z$
$\therefore 3 x=2 k-1$
$\because x^{2}=2 l ; l \in Z$
$\therefore 9 x^{2}=4 k^{2}-4 k+1$
$\therefore 2(9 l)=2\left(2 k^{2}-2 k\right)+1$
$\therefore 2 l_{1}=2 k_{1}+1 ; 9 l=l_{1}, 2 k^{2}-2 k=k_{1} \in Z$

This is contradiction, therefore $3 x+2$ must be even.

- 11. Prove or disprove that the product of two irrational numbers is irrational.
- We will disprove this statement by counter example

Let $x=\sqrt{2}$ and $y=\sqrt{8}$
$\therefore x \cdot y=\sqrt{2} \cdot \sqrt{8}=\sqrt{16}=4$ which is rational number.

12. Prove or disprove that the product of a nonzero

 rational number and an irrational number is irrational.- Let by contradiction r is a non zero rational number and x is irrational number and its product is rational
$\therefore r=\frac{a}{b} ; a, b \in Z, b \neq 0$
$\therefore r \cdot x=\frac{a}{b} \cdot x=\frac{c}{d}$
$\therefore x=\frac{b \cdot c}{a \cdot d}=\frac{m}{n} ; m=b \cdot c \neq 0, n=a \cdot d \neq 0 ; m, n \in Z$
$\therefore x$ is rational number this contradiction with the assumption x is rational.
\therefore the product of a nonzero rational number and an irrational number is irrational.

